In This Section      
 

Neurology and Neurosurgery Research

Johns Hopkins neurology and neurosurgery research brings together some of the world’s most creative and curious minds who, together are working toward cures for devastating diseases such as brain cancer, Parkinson’s disease, ALS and dementia, while broadening our understanding of the most complex organ system in the body.

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • ALS Center

    The ALS Center for Cell Therapy and Regeneration Research at Johns Hopkins is committed to identifying the causes of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), and discovering new and effective treatment options. At the ALS Center, Johns Hopkins researchers work with other investigators, including those at the Robert Packard Center for ALS Research at Johns Hopkins and clinicians within the Johns Hopkins ALS Clinic to aggressively take groundbreaking scientific discoveries and turn them into clinical applications that will improve the quality of life of those diagnosed with ALS.

    Research Areas: ALS

    Lab Website

    Principal Investigator

    Nicholas Maragakis, M.D.

    Department

    Neurology

  • Alzheimer's Disease Research Center

    The goal of the Johns Hopkins Alzheimer's Disease Research Center (ADRC) is to accelerate the discovery of new treatments that are directed at the basic mechanisms of disease, and to hasten the time when effective treatments for AD and related disorders become a reality. We have a strong commitment to basic research regarding the underlying mechanisms of Alzheimer's Disease and related disorders, and how this may translate into effective treatment. We perform clinical research seeking to identify medications to delay or treat the symptoms of dementia. We also provided many educational programs for family members and professionals.

    Research Areas: dementia, Alzheimer's disease

    Lab Website

    Principal Investigator

    Marilyn Albert, Ph.D.

    Department

    Neurology

  • Brain Cancer Biology and Therapy Lab

    The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the genetic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by large scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells.

    Research Areas: brain cancer

    Lab Website

    Principal Investigator

    Gregory Riggins, M.D., Ph.D.

    Department

    Neurosurgery

  • Gabsang Lee Lab

    Human induced pluripotent stem cells (hiPSCs) provide unprecedented opportunities for cell replacement approaches, disease modeling and drug discovery in a patient-specific manner. The Gabsang Lee Lab focuses on the neural crest lineage and skeletal muscle tissue, in terms of their fate-determination processes as well as relevant genetic disorders.

    Previously, we studied a human genetic disorder (familial dysautonomia, or FD) with hiPSCs and found that FD-specific neural crest cells have low levels of genes needed to make autonomous neurons--the ones needed for the "fight-or-flight" response. In an effort to discover novel drugs, we performed high-throughput screening with a compound library using FD patient-derived neural crest cells.

    We recently established a direct conversion methodology, turning patient fibroblasts into "induced neural crest (iNC)" that also exhibit disease-related phenotypes, just as the FD-hiPSC-derived neural crest. We're extending our research to the neural crest's neighboring cells, somite. Using multiple genetic reporter systems, we identified sufficient cues for directing hiPSCs into somite stage, followed by skeletal muscle lineages. This novel approach can straightforwardly apply to muscular dystrophies, resulting in expandable myoblasts in a patient-specific manner.

    Research Areas: stem cells, human-induced pluripotent stem cells, genomics, drugs, muscular dystrophy, familial dysautonomia

    Principal Investigator

    Gabsang Lee, Ph.D.

    Department

    Neurology

  • HEPIUS Innovation Lab

    Named after the Greek god of medicine and healing, the HEPIUS team unites neurosurgeons, biomedical engineers, scientists, radiologists and other physicians to treat and diagnose spinal cord injuries.

    Research Areas: neurosurgery, spinal cord injuries, biomedical engineering

  • JHU NIMH Research Center

    The Johns Hopkins NIMH Center is comprised of an interdisciplinary research team who has pooled their talents to study the nature of HIV-associated neurocognitive disorders (HAND). Their aim is to translate discoveries of the pathophysiological mechanisms into novel therapeutics for HAND.Our objectives are to integrate aspects of ongoing research in HAND and SIV encephalitis; to develop high-throughput and screening assays for identifying novel therapeutic compounds; to use proteomics and lipidomics approaches to indentifying surrogate markers of disease activity; to disseminate information and education about HAND through existing and new educational systems, including the JHU AIDS Education Training Center and the JHU Center for Global Clinical Education and to facilitate the entry of new investigators into neuro-AIDS research, and to catalyze new areas of research, particularly where relevant for drug discovery or the development of validated surrogate markers.

    Research Areas: neuropathy, HAND, AIDS dementia complex, myopathy, myelopathy, HIV-associated neurocognitive disorders

    Lab Website

    Principal Investigator

    Justin McArthur, M.B.B.S., M.P.H.

    Department

    Neurology

  • Laboratory of Auditory Neurophysiology

    Research in the Laboratory of Auditory Neurophysiology aims to understand brain mechanism responsible for auditory perception and vocal communication in a naturalistic environment. We are interested in revealing neural mechanisms operating in the cerebral cortex and how cortical representations of biologically important sounds emerge through development and learning.

    We use a combination of state-of-the-art neurophysiological techniques and sophisticated computational and engineering tools to tackle our research questions.

    Current research in our laboratory includes the following areas (1) neural basis of auditory perception, (2) neural mechanisms for vocal communication and social interaction, and (3) cortical processing of cochlear implant stimulation.

    Research Areas: neurophysiology, neuroengineering, audiology, cochlear implant, learning, language

    Lab Website

    Principal Investigator

    Xiaoqin Wang, Ph.D.

    Department

    Biomedical Engineering

  • Laboratory of Richard L. Huganir

    The Laboratory of Richard L. Huganir is interested in the mechanisms that regulate synaptic transmission and synaptic plasticity. Our general approach is to study molecular and cellular mechanisms that regulate neurotransmitter receptors and synapse function. We are currently focusing our efforts on the mechanisms that underlie the regulation of the glutamate receptors, the major excitatory neurotransmitter receptors in the brain.

    Research Areas: synapses, neurotransmitters, cell biology, brain, molecular biology

    Lab Website

    Principal Investigator

    Richard Huganir, Ph.D.

    Department

    Neuroscience

  • Laboratory of Vestibular NeuroAdaptation

    The Laboratory of Vestibular NeuroAdaptation investigates mechanisms of gaze stability in people with loss of vestibular sensation. A bulk of our research investigates motor learning in the vestibulo-ocular reflex (VOR) using different types of error signals. In addition, we investigate the synergistic relationship between the vestibular and saccadic oculomotor systems as trainable strategies for gaze stability. We are particularly interested in developing novel technologies to assess and deliver improved rehabilitation outcomes. We are validating a hand-held computer tablet for assessment of sensorimotor function and participating in a clinical trial comparing traditional vestibular rehabilitation against a device developed in our laboratory that can unilaterally or bilaterally strengthen the VOR.

    Members of the lab include physical therapists, physicians, engineers, statisticians and post-doctoral fellows. The laboratory is supported by generous grant funding from NASA, the NIH, the DOD and grateful patients

    Research Areas: gaze stability, vestibular sensation, vestibulo-ocular reflex, rehabilitation, sensorimotor functions

  • Marsh Lab

    The Marsh Lab studies stroke treatment, recovery and risk identification. The Marsh Lab created the Hemorrhage Risk Stratification (HeRS) score to predict hemorrhagic transformation in patients treated with anticoagulants. Currently, the Marsh Lab is using magnetoencephalography (MEG) to investigate how strokes impact higher level cognitive processes. Additional research in the lab focuses on treatment options for reversible cerebral vasoconstriction syndrome (RCVS).

    Research Areas: stroke, stroke rehabilitation, stroke recovery

    Lab Website

    Principal Investigator

    Elisabeth Marsh, M.D.

    Department

    Neurology

  1. 1
  2. 2
  3. 3

Request an Appointment

Maryland Patients

Adult Neurology: 410-955-9441
Pediatric Neurology: 410-955-4259

Adult Neurosurgery: 410-955-6406
Pediatric Neurosurgery: 410-955-7337

 

Traveling for Care?

Whether you're crossing the country or the globe, we make it easy to access world-class care at Johns Hopkins.

Outside of Maryland (toll free)
410-464-6713

Request an Appointment
Medical Concierge Services

International Patients
+1-410-502-7683

Request an Appointment
Medical Concierge Services

 
blue suitcase